

Progress Towards an Ontology Mapping Service

Ian Harrow¹, Ernesto Jimenez-Ruiz², Thomas Liener³, Simon Jupp³ and The Ontologies Mapping Project¹

¹Ian Harrow Consulting, ²The Alan Turing Institute, London UK and ³EMBL-EBI, Hinxton, UK

SWAT4LS on 5th Dec 2018 in Antwerp

Outline

1. Pistoia Alliance

- 2. Application of Ontologies and Mappings
- 3. Progress Towards an ONTOLOGIES

About Pistoia Alliance

Mission

- A global not-for-profit alliance of life science companies, vendors, publishers and academic groups
 - Lowering the barriers to innovation in Life Sciences R & D
 - <u>www.pistoiaalliance.org</u> for more information

Business value

- Precompetitive research brings value through...
 - Building new standards, tools and services
 - Sharing best practice with industry peers
 - Evaluation of tools and services
 - And much more....

Project portfolio pipeline

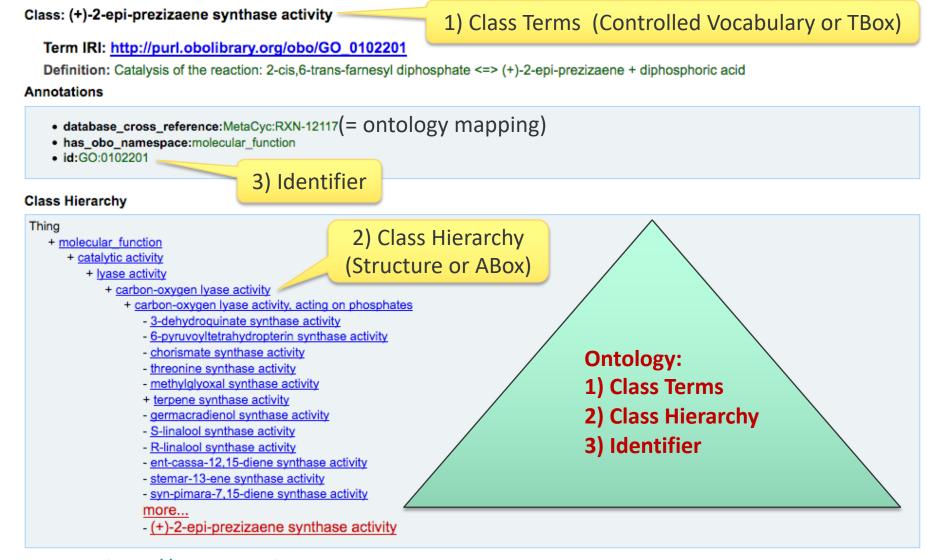
Active Portfolio

- Chemical Safety Library safety Library
- Macromolecule Notation
- Controlled Substance Compliance
- User Experience in Life Sciences (UXLS) USER EXPERIENCE
- Antibody 3D structures in the PDB
- Unified chemistry data model

Developing Portfolio

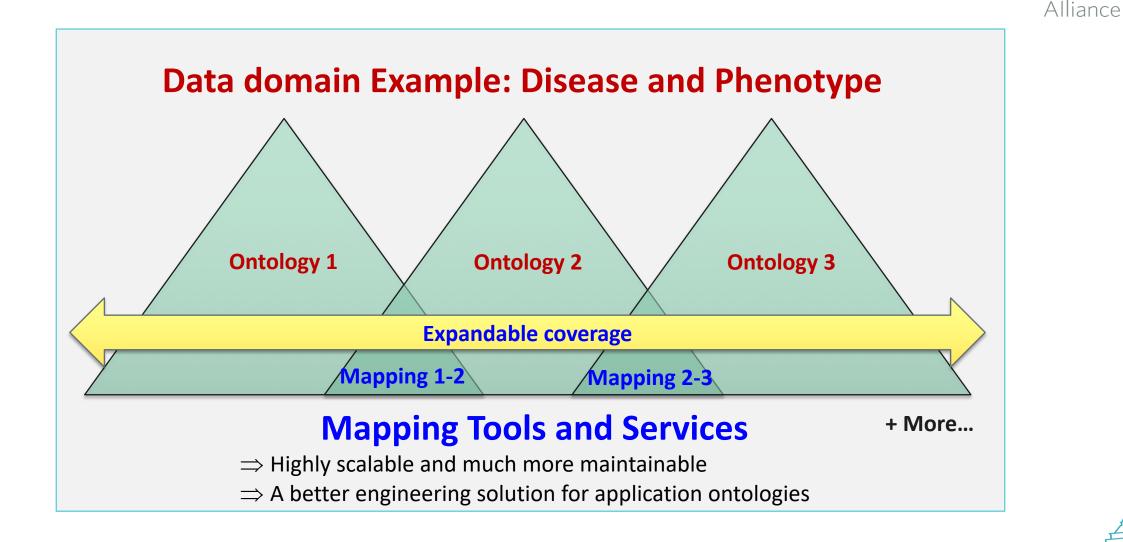
- Faster Companion Diagnostics in the Regulatory Domain
- Blockchain
- AI Centre of Excellence for Life Science R&D
- Laboratory of the Future
- FAIR data management

Outline


1. Pistoia Alliance

2. Application of Ontologies and Mappings

3. Progress Towards an ONTOLOGIES Service


Ontology Features: Example from Gene Ontology

Source: <u>http://www.ontobee.org</u>

What is Ontologies Mapping?

© Pistoia Alliance

ONTOLOGIES

Pistoia

Application of ontologies and mappings

- Pharma executives now consider data as a valuable corporate assets to enable digital transformation
 - Data integration throughout an enterprise e.g
 Horizontal Terminology Services
- Data Technology companies bridge the gap between "big data" and "innovative biological insight"
 - Data curation, valuation and governance
 - E.g. Eaglecore knowledge management platform at eggle genomics
- Semantic analytics companies harness unstructured data
 - Data extraction and building knowledge with text mining
 - E.g. SciBite and Linguamatics platforms SciBite Linguamatics

Ontologies and mappings bring structure to linked data stores

Outline

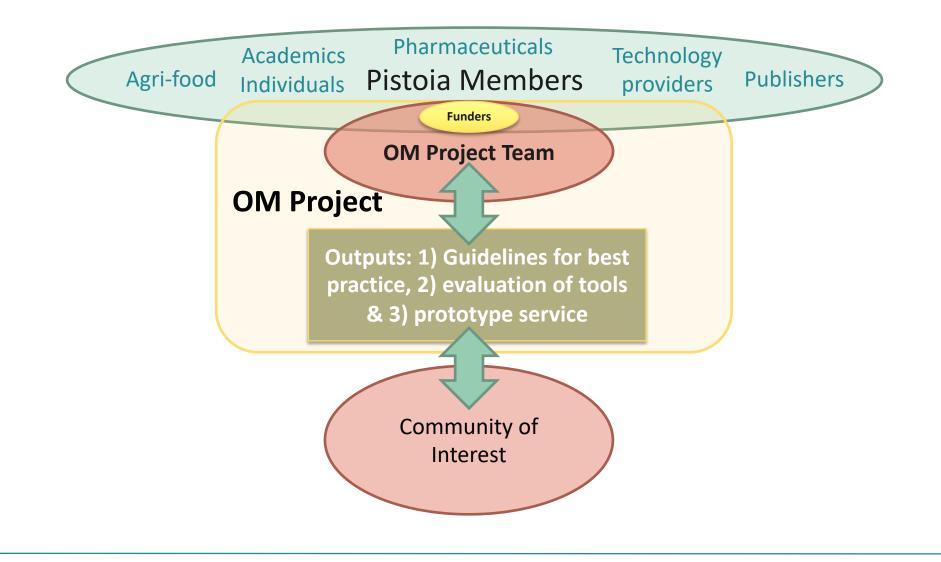
1. Pistoia Alliance

2. Application of Ontologies and Mappings

3. The Ontologies Mapping Challenge

- Ontologies can include hierarchical relationships; taxonomies; classifications and vocabularies
- They underpin numerous applications such as semantic search, linked data integration and text mining
- Ontologies are the "smart glue" of linked data to semantically enable knowledge management

BUT...


- Ontologies and their mappings are very costly to curate
- Many varying ontologies overlap in the same data domain e.g. disease and phenotype
- Need better practice, tools and services to manage and apply ontologies, including how they map to each other

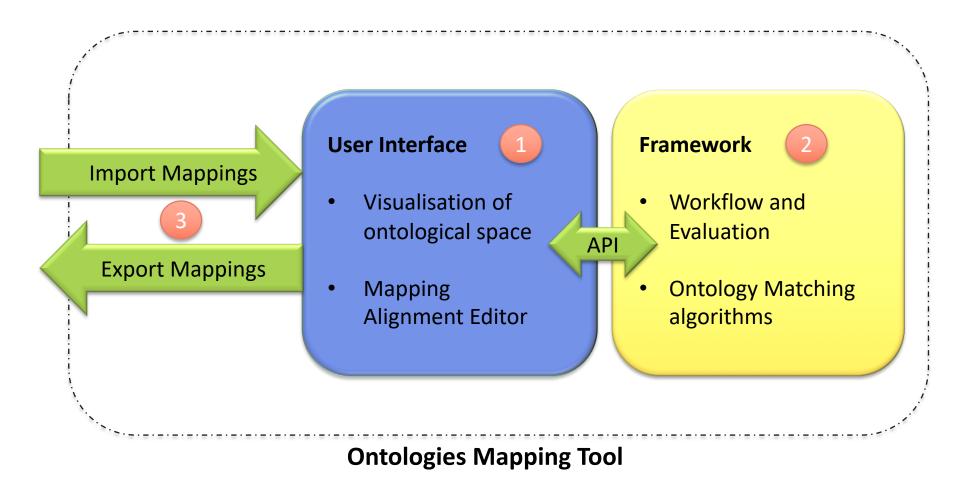
The Ontologies Mapping Project

9

Ontologies Mapping Project Overview

© Pistoia Alliance

Guidelines for Selection of Ontologies


Ontology:	Human Disease ontology	Human Phenotype	Mammalian Phenotype	Clinical Terms SNOMED-CT
Guideline:	(DOID)	(HPO)	(MP)	
1. Format (Common)	Okay	Okay	Okay	Okay
2. URI (Identifier space)	Okay	Okay	Okay	Okay
3. Versioning	Okay	Okay	Okay	Okay
4. Documentation	Okay	Okay	None found	Okay
5. Users (Documented)	Okay	Okay	Okay	Okay
6. Authority (Locus of)	Okay	Okay	Okay	Okay
7. Maintenance	Okay	Okay	Okay	Okay
8. License (Open)	Okay	Okay	Okay	Restrictions
Seven more (Total = 15)	Okay	Okay	Okay	Okay (mostly!)

- These guidelines are accessible from a public wiki:-<u>https://pistoiaalliance.atlassian.net/wiki/display/PUB/Ontologies+Mapping+Resources</u>
- They align with the principles found at the OBO Foundry:- <u>http://www.obofoundry.org</u>

ONTOLOGIES

Ontologies Mapping Tool Overview

Detailed requirements are available on the OM project public wiki:-<u>https://pistoiaalliance.atlassian.net/wiki/display/PUB/Ontologies+Mapping+Resources</u>

Tool Requirements & Evaluation of Capability

Functional Requirements		Academic 1	Academic 2	Academic 3	Commercial 2	Commercial 1	Academic 4	Commercial 3
1.1.1. Numerous view option	IS	1	1	1	1	2	1	2
1.2.1. Improving Alignments		0	0	1	1	2	2	2
1.2.2. Matching corresponde	nce	0	1	1	2	0	2	2
1.2.3. Edit mapping suggestic	ons	0	0	2	2	2	2	2
1.2.4. Tracking of modificatio	ons	0	1	0	1	2	1	2
1.2.5. Definition of context		0	0	0	1	0	0	0
2.1.1. Workflow		1	0	1	1	2	2	2
2.1.2. Evaluation metrics		1	0	2	0	2	2	1
2.2.1. Supports extensibility		0	1	1	1	0	2	2
3.1.1. Import equivalence ma	appings	0	2	2	2	2	2	2
3.1.2. Import source ontologi	ies	2	2	2	2	2	2	2
3.1.3. Use of external data so	ources	2	0	1	2	2	2	0
3.2.1. Export equivalence ma	ppings	1	2	2	2	2	2	2
3.2.2. Mapping metadata & c	locs	1	1	0	0	2	2	1
None-Functional requirement	nts							
1. No License restrictions for	use	2	2	2	2	2	2	2
2. Current Availability & Maintenance		1	1	2	2	2	1	2
3. Standalone and web service		2	1	2	2	2	1	2
gMap, AML, OLS/OXO, YAM++		41%	44%	65%	71%	82%	82%	82%
ondeca, Infotech, fluidOps	Key:-	Yes = 2	Partial = 1	Expected = 0	No = 0			

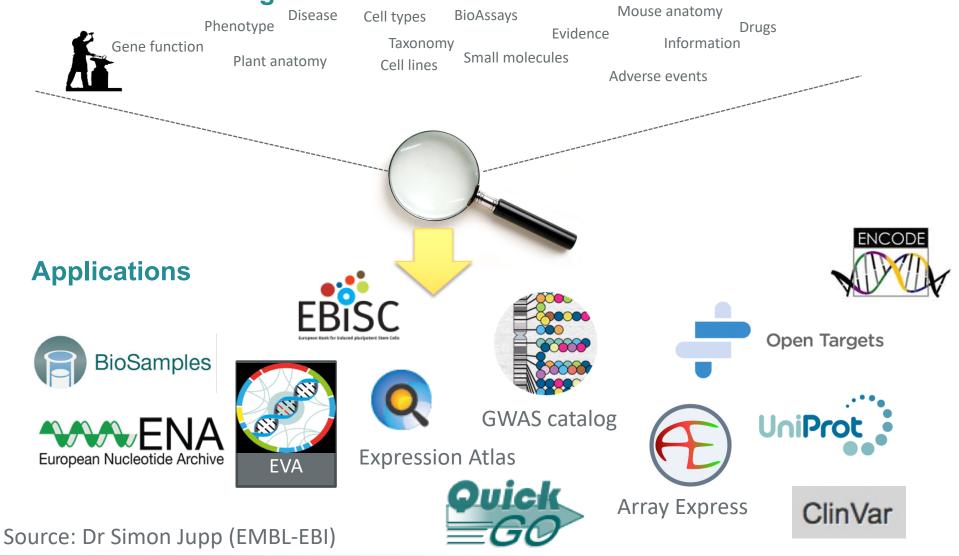
Detailed requirements and results are available on the OM project public wiki:-

https://pistoiaalliance.atlassian.net/wiki/display/PUB/Ontologies+Mapping+Resources

- 2016 Campaign publication on phenotype track
 - "Matching disease and phenotype ontologies in the ontology alignment evaluation initiative" Harrow et al. Journal of Biomedical Semantics (2017) 8:55 <u>https://doi.org/10.1186/s13326-017-0162-9</u>
- Numerous tracks include one for <u>Disease and Phenotype</u>
 - Pistoia Alliance Ontologies Mapping project organise 2 mapping tasks:-
 - Human Phenotype (HP) Ontology vs. Mammalian Phenotype (MP) Ontology
 - Human Disease Ontology (DOID) vs. Orphanet & Rare Diseases Ontology (ORDO)
- Phenotype track repeated for 2017 and 2018 Campaigns
 - ~50% of ~20 participating systems completed either or both tasks
 - Consistent top performing systems: AML and LogMap

ONTOLOGIES MAPPING A A L MAPPING

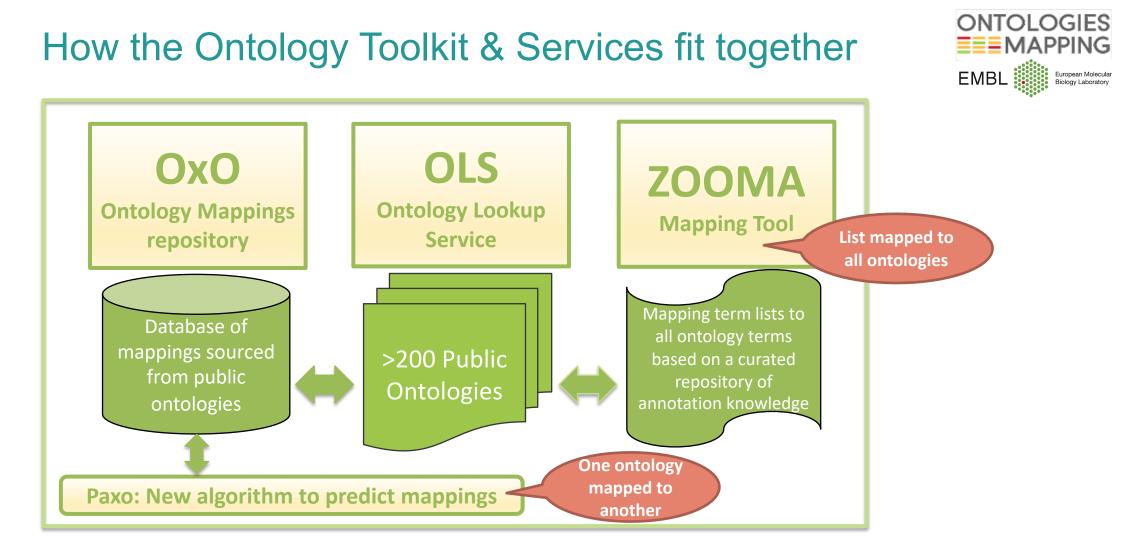
Top performers for OAEI 2017 in phenotype track


OM algorithm	Track Task	Total Equivalence Mappings	Precision Silver 3 Equiv mappings	Recall Silver 3 Equiv mappings	F-Score Silver 3 Equiv mappings	Sum F Scores Silver 3 Equiv mappings
AML	HP-MP	2029	0.822	0.951	0.882	3.791
AML	DOID-ORDO	4779	0.475	0.626	0.919	
AML	HP-MESH	5638	0.677	0.805	0.992	
AML	HP-OMIM	6681	0.624	0.768	0.998	
DiSMatch AR	HP-MP	2378	0.500	0.678	0.576	3.144
DiSMatch AR	DOID-ORDO	3130	0.539	0.603	0.684	
DiSMatch AR	HP-MESH	9161	0.385	0.542	0.917	
DiSMatch AR	HP-OMIM	7356	0.549	0.701	0.967	
DiSMatch TR	HP-MP	2331	0.517	0.687	0.590	3.183
DiSMatch TR	DOID-ORDO	3089	0.545	0.606	0.682	
DiSMatch TR	HP-MESH	9138	0.389	0.547	0.924	
DiSMatch TR	HP-OMIM	7680	0.537	0.696	0.988	
LogMap	HP-MP	2124	0.767	0.929	0.840	3.149
LogMap	DOID-ORDO	2396	0.903	0.890	0.876	
LogMap	HP-MESH	2291	0.869	0.649	0.518	
LogMap	HP-OMIM	7202	0.531	0.672	0.915	
LogMapBio	HP-MP	2204	0.749	0.941	0.834	3.291
LogMapBio	DOID-ORDO	2620	0.845	0.871	0.897	
LogMapBio	HP-MESH	2948	0.810	0.703	0.621	
LogMapBio	HP-OMIM	7725	0.508	0.659	0.939	
BioPortal LOOM	HP-MP	696	0.999	0.396	0.567	2.599
BioPortal LOOM	DOID-ORDO	1237	0.998	0.666	0.500	
BioPortal LOOM	HP-MESH	2466	0.994	0.776	0.637	
BioPortal LOOM	HP-OMIM	3768	0.992	0.941	0.895	

Source: This data is from the 3 vote consensus

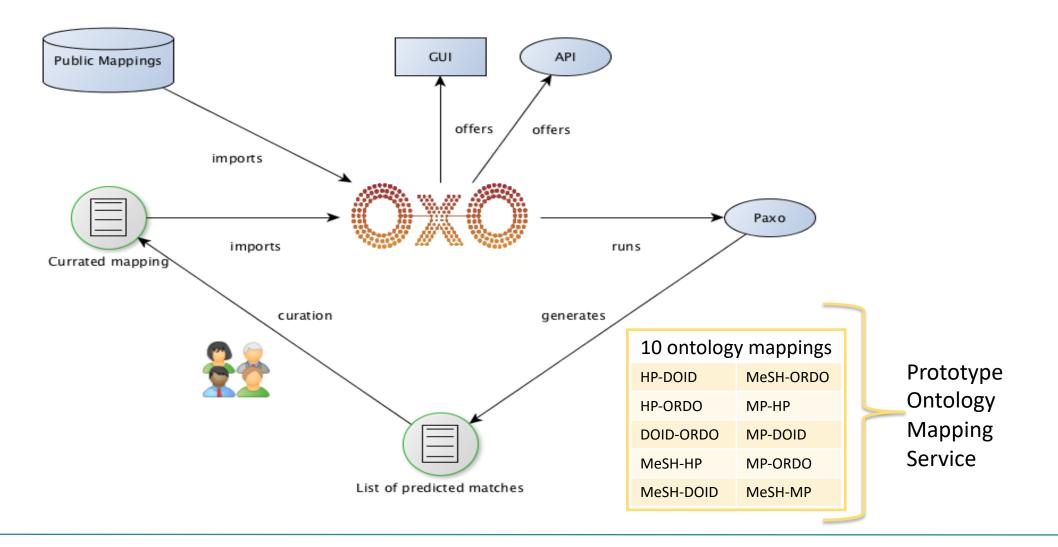
Ontologies at EMBL-EBI

Biomedical ontologies



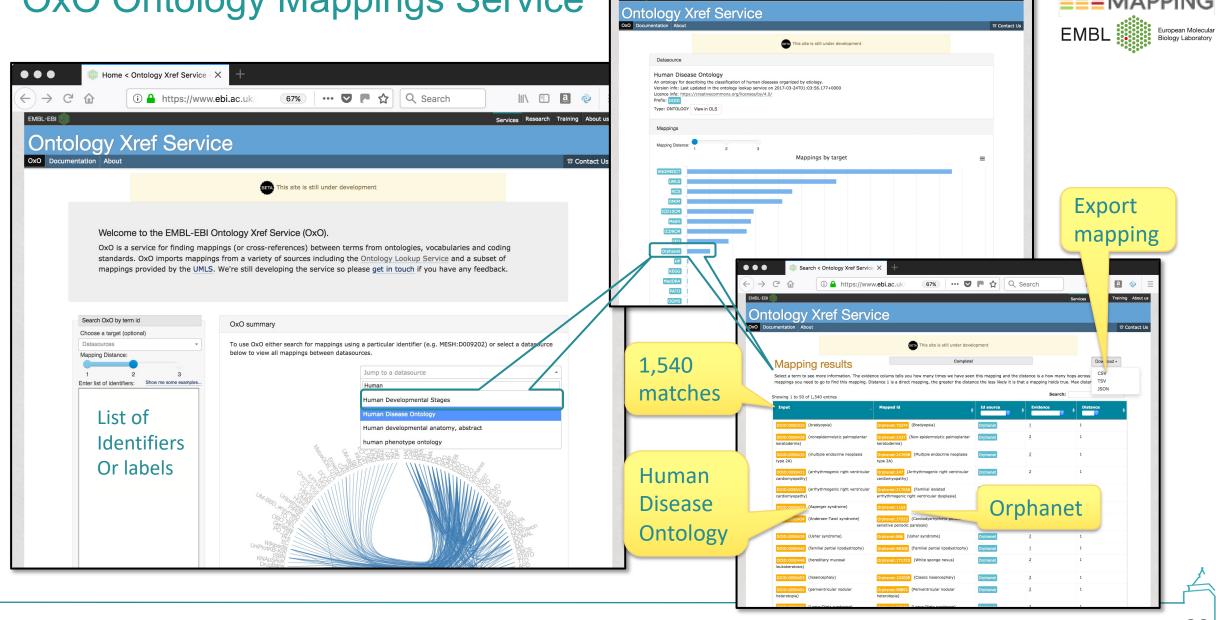
Building an Ontology Toolkit and Services

Source: Dr Simon Jupp (EMBL-EBI) Grants: ELIXIR-EXCELERATE 676559 & CORBEL 654248



- Collaborate with EMBL-EBI to build on their existing services
- Develop a new algorithm to predict mappings between any two ontologies

© Pistoia Alliance


Relationship between OxO mapping repository and the new mapping algorithm, Paxo

Pistoia Alliance

OxO Ontology Mappings Service

 $\bullet \bullet \bullet$

EMBL-EBI

Datasource < Ontology Xref Ser

(i) A https://www.ebi.ac.uk/

67% 💟 🏲 🏠 🔍 Search

Ⅲ\ 🗉 🧕 🎯 😑

Services Research Training About us

Allianc Pistoia 20

ONTOLOGIES

MAPPING

Biology Laboratory

Mapping	Predicted	Predicted	Silver	Missed	Recall	Additional	Precision for
	matches total	in silver	standard	matches		matches	additions (N=60)
mesh_mp	796	280	282	2	99.29%	516	96.70%
mesh_doid	2173	1253	1265	12	99.05%	920	86.70%
mesh_hp	1400	724	734	10	98.64%	676	60.00%
ordo_mesh	970	632	664	32	95.18%	338	85.00%
hp_doid	1976	1104	1348	244	81.90%	872	33.30%
ordo_doid	2732	2044	2553	509	80.06%	688	66.70%
ordo_hp	1305	593	752	159	78.86%	712	63.30%
ordo_mp	550	138	185	47	74.59%	412	73.30%
mp_doid	1087	310	465	155	66.67%	777	33.00%
mp_hp	2600	1318	2185	867	60.32%	1282	53.30%

Silver standard is a consensus from a panel of ontology mapping algorithms from OAEI2017

Mapping	Predicted	Predicted	Silver	Missed	Recall	Additional	Precision for
	matches total	in silver	standard	matches		matches	additions (N=60)
mesh_mp	868	282	282	0	100.00%	586	88.30%
mesh_doid	2280	1261	1265	4	99.68%	1019	81.70%
mesh_hp	1519	728	734	6	99.18%	791	60.00%
hp_doid	3636	1156	1348	192	85.76%	2480	40.00%
ordo_doid	5375	2178	2553	375	85.31%	3197	73.30%
ordo_hp	2382	623	767	144	81.23%	1759	68.30%
ordo_mesh	1079	632	782	150	80.82%	447	88.30%
ordo_mp	958	141	185	44	76.22%	817	56.70%
mp_doid	2473	320	465	145	68.82%	2153	30.00%
mp_hp	7190	1446	2128	682	67.95%	5744	43.30%

Silver standard is a consensus from a panel of ontology mapping algorithms from OAEI2017

Summary

- Guidelines to select ontologies prior to application
- Requirements vs. capabilities of commercial and academic mapping tools
- Phenotype track for OAEI challenge to determine top performing algorithms
- Progress towards a prototype Ontology Mapping Service

Significance

 Predicted Ontology Mappings from algorithms and validated by manual curation gives extended their coverage across a domain to support semantically-enabled applications

Plan for Next Phase

Build Ontology Mappings to support biology and chemistry lab data analytics

Acknowledgements Sponsors (Phase) BIOVIA 3DS (2,3) • GSK (1,2,3) • Roche/Genentech (1,2,3) • Amgen (3) . AZ/MedImmune (3) • Pistoia Accenture (3) Alliance . Bayer (3) • Merck & Co (1,2) Novartis (1,2) • Project team Jabe Wilson (Elsevier) Ian Harrow (Project Manager) • Berenice Wulbrecht (Ontoforce) Martin Romacker (Roche) • Christian Senger/Martin Koch (Osthus) . Rama Balakrishnan (Genentech) • Heiner Oberkampf (Osthus) ۲ Andrea Splendiani (Novartis) • Yasmin Alam-Faruque (Eagle Genomics) ۲ Peter Woollard/Simon Thornber (GSK) • Rolf Grigat/Erfan Younesi (Bayer) ۰ Scott Markel (BIOVIA) • CJ Farham Hameed (Pfizer) • Siddhartha Mehta (Accenture) • Rainer Winnenburg (Abbvie) Chris Piddington/David Landry (Amgen) • Hans Garritzen (MediSapiens) • Tom Plasterer (AstraZeneca) • Jane Reed/Andrew Winter (Linguamatics) . Mathew Woodwark (Medimmune) • Jane Lomax/James Malone (SciBite) Stefan Negru/Jindrich Mynarz (Merck & Co) . Carmen Nitsche/Nick Lynch (Pistoia) Thomas Liener/Simon Jupp (EMBL-EBI) ۰

ONTOLOGIES